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Abstract

As distributed machine learning (ML) workloads scale to
thousands of GPUs connected by high-speed interconnects,
tail latency in collective communication has become a major
bottleneck. Existing RDMA transports, such as RoCE, IRN,
SRNIC, and Falcon, enforce strict reliability and in-order de-
livery, relying on retransmissions and packet sequencing to
ensure correctness. While these approaches work well for
general-purpose workloads, they introduce complexity and
latency that scale poorly in ML, where even rare packet delays
can stall entire model pipelines.

We present OPTINIC, a domain-specific RDMA transport
that revisits traditional reliability guarantees based on ML’s
tolerance for partial or missing data. OPTINIC eliminates
retransmissions and in-order delivery from the NIC, enabling
a best-effort, out-of-order transport model for RDMA. Unlike
traditional RDMA, which signals completion only after com-
plete data delivery, OPTINIC introduces adaptive timeouts to
trigger forward progress when data may be lost or delayed.
OPTINIC retains standard congestion control mechanisms
(e.g., DCQCN, EQDS, or Swift) while shifting loss recovery
to the ML pipeline itself (e.g., via the Hadamard Transform
and Erasure Coding).

Our evaluation shows that OPTINIC improves time-to-
accuracy (TTA) by 2x and increases throughput by 1.6x for
training and inference, respectively, across two public clouds
(i.e., Hyperstack and CloudLab). OPTINIC also lowers 99th-
percentile latency by 3.5, cuts BRAM usage by 2.7x, and
nearly doubles NIC resilience to faults—delivering a resilient,
tail-optimized RDMA transport purpose-built for distributed
ML workloads.

1 Introduction

As distributed machine learning (ML) workloads scale across
thousands of GPUs connected by high-speed 100-400G fab-
rics, the performance bottleneck has shifted decisively from
compute to communication. [31,48] Collective operations
(such as AllReduce, AllGather, and All-to-All) have become
critical synchronization points in both data-parallel and model-
parallel training and inference pipelines [11,56,59,67]. These
operations demand tight coordination among workers, where
even minor tail delays in the communication fabric can stall
overall progress [46]. As a result, tail latency, not average
throughput, has emerged as the dominant barrier to scaling
ML workloads efficiently across large clusters [56, 59].

To address this communication bottleneck, the commu-
nity has introduced a range of optimizations. Systems like
NCCL [26], RCCL [5], and MSCCL [33] apply both algorith-
mic [48,49,55] and hardware-aware [19,30,46] techniques to
accelerate collectives. At the same time, compression methods
such as gradient sparsification [15,45,58] and quantization [4]
reduce bandwidth demands by exploiting the statistical na-
ture of stochastic gradient descent (SGD) [4, 15]. These ap-
proaches are built on a key observation: ML workloads are
statistically robust. They tolerate approximation, noise, and
even bounded data loss without compromising final model
accuracy [13,16,63].

Despite these advances, the underlying transport layer
has largely remained general-purpose and overly conserva-
tive [35,52,57]. In modern ML clusters, RDMA is the dom-
inant communication substrate, typically implemented via
RoCE or its derivatives [18, 22]. These transports enforce
strict reliability and in-order delivery, relying on retransmis-
sions, packet sequencing, and lossless flow control mecha-
nisms like Priority Flow Control (PFC) to ensure correctness.
While appropriate for traditional distributed systems (like
key-value stores or databases) [14,40,41,60], these mecha-
nisms are increasingly sub-optimal for ML. Their reliance on
complete delivery as a precondition for forward progress intro-
duces latency-critical paths that do not scale. A single packet
loss can cascade into Go-Back-N retransmission storms or
PFC-induced head-of-line blocking, stalling pipelines across
the entire cluster [18,57].

In response, several recent systems have begun rethinking
RDMA transport. IRN [35] removes PFC by enabling in-NIC
loss recovery through selective repeat, bitmap tracking, and
SACK-based retransmissions. While this design improves
cluster scalability, it inflates per-QP state and adds reorder-
ing complexity in the NIC. SRNIC [57] simplifies the NIC
datapath by removing WQE caching and onloading retransmis-
sions and reordering to host software, improving QP density
and reducing NIC memory pressure. UCCL [67] pushes this
idea further by onloading the entire transport control plane—
including congestion control, flow scheduling, and multipath
routing—into software, treating the NIC as a streamlined
datapath.

In contrast, Falcon [52] takes the opposite approach: it em-
braces NIC complexity by integrating fast retransmissions,
delay-based congestion control, and multipath routing directly
into hardware. While Falcon performs well under loss, it in-



creases the NIC state and vulnerability to hardware faults. At
the same time, the Ultra Ethernet Consortium (UEC) proposes
a clean-slate design for Al workloads [11,25], introducing
features like packet spraying, hybrid congestion control, and
fast loss detection. However, like Falcon and IRN-based ap-
proaches, UEC’s proposed transport preserves strict reliability
semantics—requiring full delivery before forward progress.

The above-mentioned systems represent important steps
forward, but they all retain a common assumption: that packet
loss is rare and must be recovered before computation can
continue [35, 52,57, 67]. They preserve the long-standing
semantic that forward progress is gated on complete delivery.
At the ML scale, however, this assumption no longer holds.
What seems like rare loss at a single node becomes frequent
across thousands of workers synchronizing in parallel [56,59].
These losses accumulate at collective barriers, where even
a single straggler can stall the entire operation. This is a
classic case of “tail at scale” [12], worsened by transport-
layer mechanisms that insist on full recovery before making
progress.

In this paper, we ask: If ML workloads can tolerate partial
loss and reordering, why enforce strict delivery guarantees at
the NIC at all? If the application is already robust to bounded
loss, why not remove the mechanisms that wait for full deliv-
ery entirely?

We present OPTINIC, a domain-specific RDMA transport
that rethinks reliability and forward progress from the ground
up. OPTINIC eliminates retransmissions and in-order deliv-
ery from the NIC, forwarding best-effort, out-of-order packets
directly to application memory. Crucially, OPTINIC replaces
delivery-based progress with a new primitive: adaptive time-
outs. Rather than waiting for every packet to arrive, the re-
ceiver proceeds once a fixed time elapses—even if some data
is missing. These timeouts are coordinated across peers and
tuned to the collective’s structure (e.g., Ring, Tree, BCube),
providing consistent, time-bounded semantics for progress in
lossy networks.

OPTINIC preserves compatibility with existing RDMA
infrastructure. It retains standard congestion control mech-
anisms (such as DCQCN [68], EQDS [37], or Swift [28])
and maintains IB verbs semantics [8, 36], while keeping
the RDMA programming model intact. Rather than re-
covering from packet loss within the transport, OPTINIC
bounds its impact and shifts recovery to the ML stack, where
lightweight redundancy mechanisms (such as the Hadamard
Transform [59]) can reconstruct missing data efficiently. Time-
out tuning, credit/window management, and error handling
remain in software, preserving flexibility without adding NIC
complexity.

This architectural shift significantly simplifies the NIC.
OPTINIC eliminates reorder buffers, retransmission queues,
and per-packet sequencing logic, cutting NIC BRAM us-
age by 2.7x and nearly doubling mean-time-between-failure
(MTBF) by removing fault-prone state. It also prevents tail
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Figure 1: Overlapping intra-layer and inter-layer collec-
tive patterns during FSDP backward pass.

latencies caused by recovery delays at the cluster scale.

We further evaluate OPTINIC across a range of ML work-
loads and public cloud environments (§5). In clusters running
on Hyperstack and CloudLab, OPTINIC delivers 1.8-2.5x
speedups for collectives across message sizes and topolo-
gies. For end-to-end training, OPTINIC improves time-to-
accuracy (TTA) by 2x using ZeRO-3 parallelism, boosts in-
ference throughput by 1.6 x, and reduces time-to-first-token
(TTFT) tail latency—a key measure of LLM responsiveness—
by 3.5 x, all while preserving model accuracy.

In short, OPTINIC challenges the long-held assumption
that reliable delivery is a necessary precondition for correct-
ness in distributed ML systems. By replacing delivery-based
progress with timeout-driven semantics tailored to ML, OP-
TINIC enables a new class of transport designs: simple, state-
less, and resilient—co-designed for the unique demands of
modern machine learning.

2 Background and Motivation

2.1 Communication Bottlenecks in ML Workloads

Distributed ML workloads rely on fine-grained, structured
communication between GPUs to synchronize computation
across a cluster. These communication patterns are domi-
nated by collectives such as AllToAll (AA), AllReduce (AR),
AllGather (AG), and ReduceScatter (RS), which are invoked
on every iteration of training or every decoding step during
inference. The specific collective topology and frequency
are determined by the parallelism strategy employed—data,
model, pipeline, tensor, or hybrid [29, 66].

In data parallelism, models are replicated across workers
and gradients are synchronized using AR. More advanced
variants, such as Fully Sharded Data Parallelism (FSDP) [66]
or ZeRO-3 [43], reduce memory usage by partitioning the
model state, but introduce additional collectives, AG and RS,
within each training step. In model or pipeline parallelism,
activations are passed between layer partitions across devices,
resulting in fine-grained, latency-sensitive exchanges. Ten-
sor parallelism introduces intra-layer collectives: for example,
outputs of split matrix multiplications must be gathered across
GPUs to proceed. Inference workloads further introduce com-
plications with cache lookups, sequence-level slicing, and
context merging, frequently relying on AA or AG collectives.



Feature | RoCE | IRN [35] | SRNIC [57] | Falcon [52] | UCCL [67] | OPTINIC
Transport Reliability Go-Back-N (HW) | Selective Repeat (HW) | Selective Repeat (SW) Selective Repeat (HW) | Selective Repeat (SW) Best Effort
Packet Reordering No/Dropped Buffered in NIC Software Reordering Buffered in NIC Software Reordering Offset Based
Congestion Control Hardware Hardware Hardware Hardware Software Hardware
Priority Flow Control | Required Not Required Not Required Not Required Not Required Not Required
Target Workloads General RDMA General RDMA RDMA + ML RDMA + ML + HPC ML Collectives ML Collectives

Key Focus ‘ High performance ‘ +Network efficiency

| +Connection scalability | +Programmable CC

| +Programmable transport | +Tail optimality

Table 1: Evolution of RDMA transport designs: from reliability-centric to tail-optimal. OPTINIC eliminates retransmis-
sion and reordering machinery, and uses best-effort, offset-based placement to support large-scale ML collectives.
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Figure 2: Training and inference accuracy of all models
remains stable under partial network drops (< 5%).

Most often, workloads combine these strategies. Figure |
illustrates the backward pass of an FSDP pipeline, where intra-
layer collectives (AG — compute — RS) are chained together,
and inter-layer prefetches run concurrently. This mixture of
serial and parallel collectives creates intricate synchronization
dependencies that define the critical path.

As models scale to hundreds of billions of parameters [31,
59] and clusters scale to thousands of GPUs [18], these col-
lectives increasingly dominate end-to-end performance. Even
a single delayed packet in one GPU’s AG can stall the en-
tire iteration. Studies show that collectives can account for
50-70% of total runtime in such systems [46,59]. While band-
width requirements are well-understood, the bottleneck is not
throughput but tail latency—specifically, the delay incurred
by the slowest GPU in each synchronization round.

This effect is especially pronounced during inference. In
multi-query batching or sequence-parallel pipelines, collec-
tives are triggered at sub-millisecond granularity, with little
opportunity to amortize communication delays. Time-to-first-
token (TTFT) is directly impacted by per-step stalls, even
if only a few packets are delayed. Moreover, the data ex-
changed in these collectives—intermediate tensors, activation
fragments, KV cache blocks—is often small, redundant, or
transient [17, 65]. Yet today’s transports still enforce strict
delivery semantics on every packet, waiting for full and in-
order delivery before triggering progress. These semantics
ignore ML’s tolerance to loss (§2.2) and impose tail-latency
penalties disproportionate to the impact of missing data.

2.2 ML Workloads are Resilient to Loss

The communication bottleneck in ML arises not only from
message frequency but also from a mismatch between trans-
port semantics and application needs. ML workloads are not
fragile distributed systems. Rather, they are designed to be

robust to approximation, randomness, and partial data [31,56].

Stochastic gradient descent (SGD) inherently absorbs noise
across iterations [15]. Prior systems have leveraged this
property to reduce bandwidth through quantization [4], gra-
dient sparsification [15], or reduced-precision formats like
bfloat16 [4, 15]. In-network aggregation frameworks such as
SHARP perform approximate or lossy reductions directly
in the dataplane, showing that full-precision delivery is not
necessary for convergence [19].

This resilience extends beyond gradients. Activations, at-
tention maps, and routing metadata are often recomputed or
subsampled in subsequent steps. In MoE models [42, 50],
missing expert outputs may be ignored or replaced via fall-
back paths. In self-attention [54], partial loss in key/value
tensors may have a negligible impact due to the smoothing be-
havior of softmax layers. Figure 2 shows that across a variety
of large-language models (LLMs) and datasets, both training
and inference accuracy remain stable even at 5% drop rates.

Even when loss occurs, it is not uniformly damaging. Many
tensors are padded, sparse, or partially redundant. From an
application perspective, ML pipelines do not require every
packet to arrive; rather, they require only enough data to
complete the current step. This suggests a different progress
model: one that favors bounded, timely delivery over strict
reliability. While best-effort delivery may introduce nonde-
terminism, such variability is already present in large-scale
training pipelines, and techniques such as per-step logging or
structured redundancy can aid debugging and reproducibility.

2.3 The Cost of Reliable (RDMA) Transports

Despite loss tolerance of ML workloads, the transport layer
remains conservative. RDMA transports like RoCE enforce
strict reliability by default: Go-Back-N retransmissions, in-
order delivery, and PFC to avoid loss [35,57]. These mecha-
nisms are implemented entirely in hardware. NICs maintain
per-connection state, including retry counters, sequence num-
bers, window logic, and reorder buffers. They use acknowl-
edgment packets to detect loss, timers to trigger recovery, and
congestion windows to pace the sender. Even the widely-
used NVIDIA NCCL stack uses RDMA’s reliable RC queue
pairs (QPs) with control/data QPs per peer, tightly coupling
transport reliability with application progress [26].

Reliable semantics work well for key-value stores or RPCs,
but they scale poorly for ML [56,59]. A single lost packet can
block an entire collective. Worse, reliability mechanisms turn



rare events into protocol-level delays. PFC-induced backpres-
sure causes head-of-line blocking. Reordering logic inflates
NIC memory usage. Retransmissions inject traffic bursts. In
large ML jobs, where collectives synchronize thousands of
workers, such events are no longer rare—they are expected.
What appears as a one-in-a-thousand loss at a single node
becomes one per step across the cluster.

Recent designs have tried to reduce this complexity. IRN re-
places Go-Back-N with selective repeat, using bitmaps and se-
lective ACKs to recover lost packets more efficiently [35]. SR-
NIC offloads reordering and retransmissions to software and
eliminates the WQE cache, reducing NIC state [57]. UCCL
moves the entire transport control plane into software, using
the NIC purely as a datapath [67]. Falcon enhances the NIC
instead, tightly integrating loss recovery, congestion control,
and multipath routing for tail performance under stress [52].

These efforts vary in architecture but share a core assump-
tion: that loss must be detected and corrected before progress.
Table | compares these designs. All still enforce strict deliv-
ery semantics and treat forward progress as a function of full
data arrival. This model is fundamentally misaligned with
ML workloads, where approximate or delayed recovery is not
only acceptable—it is preferable to waiting.

2.4 Reliability Hurts Fault Tolerance

Finally, enforcing reliability reduces the fault tolerance of
the NIC. Transport-layer mechanisms—retry logic, sequence
tracking, congestion windows—are stored in NIC SRAM,
tightly coupled with datapath execution. These stateful el-
ements are vulnerable to soft errors, transient failures, and
silent corruption [7,27]. At a cluster scale, even conserva-
tive mean-time-between-failure (MTBF) estimates lead to
frequent failures. A stuck timer, corrupted sequence num-
ber, or missed completion can stall a QP indefinitely, halting
collectives and triggering global backoff.

This fragility is unnecessary. ML workloads can make
forward progress without complete delivery. Rather than hard-
ening unreliable machinery inside the NIC, we eliminate it.
OPTINIC discards retransmissions, in-order enforcement, and
per-packet tracking altogether. Instead, it forwards best-effort
packets directly to memory and uses a timeout mechanism
to signal progress when no new packets arrive. Recovery, if
needed, is handled in software via structured redundancy (e.g.,
Hadamard Transform [59]), §3.2.

Our architecture reduces per-QP state to just 20 bytes: no
retry counters, timers, reorder buffers, or flow windows. Only
minimal congestion control metadata remains. As we show in
(85.3), this design reduces NIC BRAM usage by 2.7 x, nearly
doubles MTBF in hardware fault models, and eliminates the
tail stalls caused by reliability logic.

3 Design of OPTINIC

We present OPTINIC, a resilient, tail-optimal RDMA archi-
tecture for ML that eliminates retransmissions and in-order

QP Type Offloaded Reli- In-Order
Packetization  ability = Delivery
RC v v v v
uc v X v X
ub X X X X
OPTINIC: XP v X X v

Table 2: Comparison of RDMA QP types [36] and OP-
TINIC along key transport features. RC ensures reliability
and ordering but incurs high tail latency; UC drops re-
liability but lacks congestion control (CC); UD offers no
hardware support. OPTINIC’s XP (eXpress Path) fills
the gap: it drops reliability and ordering while retaining
connection state, offloaded packetization, and CC.

delivery at the NIC. Instead of tying progress to reliable de-
livery, OPTINIC introduces bounded completion semantics:
each operation completes within an application-specified time-
out, and the NIC signals partial completion to enable timely
progress—even when some data is lost.

OPTINIC occupies a new point in the RDMA transport
design space (Table 2)—dropping reliability and ordering
guarantees while retaining connection state, hardware pack-
etization, and congestion control. These choices reflect its
goal: to minimize tail latency and protocol overhead while
preserving the RDMA programming model.

We begin by describing the transport architecture of Op-
TINIC (§3.1), covering its design for data delivery, bounded
completion semantics, and congestion control. Next, we de-
scribe a software-level recovery mechanism (§3.2), which
enables model correctness even when packets are lost or
partially delivered. We then present two deployment map-
pings (§3.3), showing how OPTINIC can be realized with
minimal changes to existing RDMA NICs: (1) by modifying
SRNIC [57] to remove reliability machinery, and (2) using
off-the-shelf RoCE NICs with the UC transport.

3.1 OPTINIC’s Transport Architecture for RDMA

OPTINIC reimagines the standard RDMA transport
abstractions—data delivery, completion, and congestion
control—to support a lossy, time-bounded execution model
tailored for ML workloads. While these services exist in all
RDMA transports [36], their implementation in OPTINIC is
explicitly designed to tolerate packet loss, avoid reordering
overheads, and guarantee forward progress within application-
defined time bounds. Each transport component is simplified
to operate without retransmissions or ordering guarantees,
while preserving the core RDMA programming model.

In OPTINIC, senders issue standard RDMA operations,
which are fragmented into self-describing packets that can be
delivered and placed independently of arrival order (§3.1.1).
Completion is decoupled from reliable delivery: each work
request entry (WQE) includes a timeout, and the NIC sig-
nals completion either when all fragments are received, or the
timer expires (§3.1.2). This bounded approach enables timely



progress reporting and downstream recovery. Congestion con-
trol remains intact: OPTINIC supports existing ECN-, delay-,
or credit-based logics by separating rate regulation from reli-
ability, allowing pacing to operate cleanly over a best-effort
substrate (§3.1.3).

INFO: Key RDMA Concepts [36].

* RDMA transports use Work Queue Entries (WQEs) to describe
operations such as SEND, RECV, or WRITE. Each WQE corre-
sponds to a message and resides on a queue pair (QP). When an
operation completes, the NIC posts a Completion Queue Entry
(CQE) to notify the application.

¢ One-sided verbs like WRITE allow a sender to directly place
data into the receiver’s memory without coordination. Two-sided
verbs like SEND/RECV require both sender and receiver to post
matching WQEs.

¢ Packets within a message are usually sequenced using Packet
Sequence Numbers (PSNs). In OPTINIC, we instead use a per-
message sequence number called wge_seq to identify operations
and support timeout and preemption logic. Remote memory
addresses are communicated via the RETH (RDMA Extended
Transport Header) in one-sided operations.

3.1.1 Data Delivery Semantics. The core function of
RDMA transport is to move data from source to destina-
tion memory via direct memory access (DMA). For large
messages, the NIC splits data into MTU-sized packets that
must be placed correctly in the destination buffer. Traditional
RDMA transports—such as Reliable Connected (RC) and
Unreliable Connected (UC), Table 2—rely on strict in-order
delivery for correct placement: only the first packet carries
the full remote address and offset, while later packets infer
their position using implicit packet sequencing. This ordering
assumption forces reliable transports to either buffer out-of-
order packets (e.g., with selective repeat) or retransmit them
(e.g., with Go-Back-N), introducing latency, memory pressure,
and tail amplification under loss.

In OPTINIC, we remove these dependencies by treating
out-of-order arrival as the common case. We eliminate re-
ordering logic entirely and instead ensure correct placement
through self-describing packets, each of which carries suffi-
cient metadata to be placed independently of other packets.

Self-Describing Packets. To place a packet correctly, the re-
ceiver must know two things: (1) which message the packet
belongs to, and (2) where within the target buffer the pay-
load should be written. Existing transports do not provide
this information per packet. For one-sided verbs (like RDMA
WRITE), only the first packet includes a RETH header with
the virtual address, remote key (rkey), and total length; sub-
sequent packets rely on in-order arrival to infer their offset.
Two-sided verbs like SEND/RECV behave similarly: the re-
ceiver has the base address from its posted WQE, but packets
carry no explicit offset—again relying on strict ordering.
This model breaks under loss or reordering. RC must buffer
until gaps are filled; UC simply drops out-of-order packets.

Neither can safely place packets that arrive out of order. OP-
TINIC addresses this by making every packet self-describing.
Each fragment carries metadata needed for direct placement:

* For one-sided operations, each packet includes the full
RETH header: the virtual address (with offset) and rkey.

* For two-sided SEND/RECV, each packet includes a byte
offset into the pre-posted receive buffer.

This allows the receiver to perform in-place DMA on
arrival—without buffering, reordering, or inferring offset from
PSN. The NIC simply extracts the offset from the packet
header and writes the payload to memory. This design sup-
ports correct placement regardless of arrival order and applies
uniformly to one-sided and two-sided operations.

Out-of-Order Delivery Across Messages. Traditional RDMA
semantics also require that messages be delivered in order:
packets from a new message cannot be processed until the pre-
vious message completes. This works under reliable delivery,
where missing fragments are eventually retransmitted. In Op-
TINIC, however, packets may be lost permanently. Waiting
for missing fragments would stall the QP indefinitely.

To allow forward progress without buffering, OPTINIC
introduces a single-active-message model. Each packet carries
a wqe_seq identifier to indicate which message it belongs
to. The receiver maintains a single expected wge_seq and
processes packets as follows:

« If the packet’s wge_seq matches the expected value, it is
part of the active message and is placed immediately.

« If the packet’s wqe_seq is greater, the sender has moved
on. The receiver finalizes the previous message and begins
processing the new one.

* If the wge_seq is less, the packet belongs to a completed
(or timed out) message and is dropped.

This keeps receiver state bounded: only one active message
is tracked per QP, and no per-message buffering is required.
The arrival of a new message acts as an implicit timeout for
the previous one, allowing the receiver to progress earlier.

Late Packet Handling. Once a message is completed—either
by receiving its final fragment or by timeout—the NIC ad-
vances the expected wge_seq, clears associated state, and
posts a CQE. Any packets that arrive afterward with the old
sequence number are immediately dropped. This ensures cor-
rectness even in the presence of delayed fragments or multi-
path reordering: late packets cannot corrupt application mem-
ory or confuse the completion logic.

3.1.2 (Bounded) Completion Semantics. Traditional
RDMA transports define completion based on reliable de-
livery: an operation completes when all its fragments are
received and acknowledged. This model assumes eventual
delivery and ties progress to in-order arrival and retransmis-
sions. In OPTINIC, however, these assumptions no longer



hold. There are no retransmissions, and packets may be lost
permanently. To ensure forward progress without reliability,
OPTINIC introduces a new model: bounded completion se-
mantics, where each operation completes within a timeout
and reports partial progress if necessary.

OPTINIC preserves the notion of completion familiar to
RDMA developers. On the sender side, a WQE is marked
complete once all fragments have been transmitted—no ac-
knowledgments are required. On the receiver, normal com-
pletion occurs when the NIC observes the last fragment of
a message (marked explicitly). Even if earlier packets were
lost, receiving the final one signals message completion and
triggers a CQE.

When the final fragment never arrives, OPTINIC uses an
application-specified timeout to avoid indefinite stalls. Each
WQE includes a timeout value that bounds how long it can
remain active. If this deadline expires before complete data
arrival, the NIC finalizes the WQE and generates a CQE indi-
cating partial progress.

To track this, the NIC maintains a per-WQE byte counter
that accumulates the payload size of successfully placed pack-
ets. This logic reuses existing DMA metadata and adds only
minimal state. Upon timeout, the NIC reports this count to
the application, allowing the upper layer (e.g., the collective
engine) to proceed with partial data.

Timeouts are managed using per-WQE hardware timers,
similar to those already implemented for retry or RNR timeout
logic in reliable transports [35,57]. These timers are reused
but reinterpreted: instead of triggering retransmissions, they
now bound execution time.

Early Completion via Preemption. OPTINIC introduces a
form of early timeout via preemption. If the receiver observes
a packet from a newer message (with a higher wge_seq), it
immediately finalizes the current message and begins process-
ing the new one. This mechanism ensures timely progress
and bounds per-WQE state, even when packets are delayed or
reordered. Any subsequent packets from the older message
are dropped, ensuring correctness.

Adaptive Timeout Estimation. Choosing a fixed timeout is
challenging in distributed ML workloads, where network con-
ditions and collective patterns vary widely [17,65]. To address
this, OPTINIC includes an adaptive timeout mechanism that
adjusts values over time.

After each collective operation, nodes record two key statis-
tics: the elapsed time and the number of bytes successfully
received, including both full and partial completions. These
values are exchanged asynchronously across the collective
group and used to compute an empirical per-byte transfer cost
(e.g., microseconds per kilobyte). Each node then proposes
a timeout value for future iterations, derived by multiplying
this cost by the message size.

Before the next invocation of the same collective on the
same group, nodes aggregate the proposed values to form

a group-wide timeout. They compute the median across all
peers to reduce the impact of outliers (e.g., nodes experienc-
ing transient loss or congestion). To further avoid oscillation,
especially in small collectives, the group applies an expo-
nentially weighted moving average (EWMA) to smooth the
update: Thew = O+ Tiedian + (1 — @) - Toig. We use o0 = 0.2,
which balances responsiveness with stability. The resulting
value becomes the canonical timeout estimate for future oper-
ations of the same collective and group.

If no historical observations are available—such as on the
first invocation—OPTINIC initializes the timeout using the
measured duration of a warmup collective executed during
the bootstrap phase. Specifically, it sets: Tipitiat = (1 +7) -
Twarmup + O, where 7y is a multiplicative safety margin (we
use 0.25) and 8 is a small additive slack (50us) to absorb
short-term variance. This conservative baseline ensures that
early iterations proceed reliably while timeout estimation
converges.

Timeouts are applied at the granularity of individual RDMA
operations. For collective algorithms with multiple phases,
the total timeout budget is divided across phases: parallel
steps share the same deadline, while sequential steps are as-
signed proportional slices, ensuring that the entire operation
completes within the allotted time.

Finally, small control-plane messages—Ilike handshakes
and phase markers—are typically under one MTU and do
not impact tail latency or bandwidth. OPTINIC routes them
over the pre-existing reliable channel, avoiding unnecessary
timeout logic and keeping the data path focused on large
transfers.

Timeout Behavior Across Verbs. Timeout behavior follows
the standard RDMA model: it applies only to the side that
posts a WQE.

¢ SEND/RECYV (two-sided verbs): Both sender and receiver
post WQEs and each side attaches its own timeout.

* WRITE (one-sided verb): Only the sender posts a WQE and
sets a timeout. The receiver performs DMA but does not
track time.

* WRITE_WITH_IMM: Behaves like a hybrid; both sides post
WQEs, and timeouts are active on both ends.

* READ: The requester attaches a timeout. To avoid unnec-
essary transmissions, OPTINIC piggybacks this deadline
in the request, allowing the responder to stop sending after
the deadline.

3.1.3 Congestion Control Semantics. In traditional RDMA
transports, congestion control (CC) is tightly coupled with
reliability: packet loss is treated as a congestion signal and
triggers retransmission. OPTINIC eliminates retransmissions
entirely, decoupling these two mechanisms. In this model,
dropped packets no longer imply congestion, and feedback
packets from the receiver (e.g., ACKs or CNPs) are interpreted
purely as best-effort congestion signals, not as proofs of reli-



able delivery.

Despite this shift, OPTINIC remains fully compatible with
the dominant RDMA CC schemes deployed in practice. ECN-
based algorithms like DCQCN [68] rely on explicit switch
marks and CNPs generated for packets that do arrive; their
control loops operate unchanged. Delay-based controllers
such as TIMELY [34] and Swift [28] compute RTT from
timestamped feedback packets, which OPTINIC continues
to generate for received packets; lost packets yield no feed-
back. Likewise, telemetry- and credit-based schemes such
as HPCC [32] and EQDS [37] depend on in-band telemetry
or explicit credit messages—none of which require reliable
delivery of every data packet.

3.2 Lightweight Data Recovery & Loss Mitigation

Since OPTINIC operates without retransmissions or in-order
delivery, some data loss is expected. Rather than masking this
loss via heavyweight transport-layer repair, OPTINIC lever-
ages the inherent robustness of ML workloads and introduces
a lightweight software mechanism to mitigate its impact. The
key goal is to prevent localized packet drops from introducing
correlated corruption in model state or gradient tensors.

Loss Amplification From Spatial Clustering. In a naive de-
sign, each packet carries a contiguous slice of a tensor. If
this packet is lost, its entire span of values is zeroed during
placement. This spatially clustered loss disproportionately
affects model quality: adjacent values often correspond to
neighboring neurons or channels, and the resulting distortion
can destabilize training or degrade inference accuracy. Prior
work has shown that structured randomness—such as that in-
troduced by the Hadamard Transform [39]—can spread such
errors across a tensor and preserve convergence even under
significant loss [31,56,59].

INFO: Hadamard Transform [39]. It is an orthogonal linear
mixing operation that disperses each input element across all output
coefficients. This spreads local errors uniformly and preserves
tensor norms, making it effective for mitigating sparse loss.

(a) Block-Wise Encoding for Compute Efficiency. To reduce
computational overhead, OPTINIC applies the Hadamard
Transform in a block-wise manner. Each tensor is logically
divided into B blocks of p elements (typically matching the
per-packet MTU size), and each block is transformed indepen-
dently. Because the transform is linear, encoded tensors can
be aggregated or reduced without decoding—a useful prop-
erty for collectives (like AllReduce). Block-wise encoding
significantly lowers GPU compute cost (§5.3) but is not suffi-
cient by itself: if a packet carries an entire encoded block and
is lost, all p coefficients from that block are erased, nullifying
the transform’s resilience benefit.

(b) Stride-based Packet Interleaving to Improve Recovery.
To prevent this failure mode, OPTINIC introduces a stride-
based layout that interleaves encoded blocks across packets.

After transforming each block, packets are constructed by
selecting a fraction of coefficients from multiple blocks, rather
than all coefficients from a single block. Specifically, a stride
parameter S determines how many blocks contribute to a
packet: each packet carries p/S elements from each of S
blocks, for a total of p elements. This interleaving spreads
the impact of a lost packet across many blocks, reducing the
distortion experienced by any single one.

This layout is efficiently implemented via Scatter—Gather
Entries (SGEs), an RDMA feature [36] that allows non-
contiguous memory regions to be transmitted in a single
message. When striding is enabled, each packet header in-
cludes S and a per-packet offset, allowing the receiver to
perform correct placement without coordination or ordering
guarantees—extending the self-describing packet abstraction
(83.1.1).

With maximal striding (S = p), each packet contains one co-
efficient from each of p blocks. Losing a packet in this regime
zeroes one element per block, converting clustered loss into
sparse noise. The inverse Hadamard Transform uniformly
distributes this residual error across each affected block. The
stride parameter S thus allows OPTINIC to trade off dis-
persion strength against complexity: higher S improves data
recovery, but mixes more block elements per packet. We evalu-
ate the benefits of this design in §5.3, showing that it preserves
accuracy even under nontrivial packet loss.

3.3 Realizing OPTINIC on Existing RDMA NICs

Although OPTINIC defines new transport semantics, many
of its mechanisms align with capabilities already present
in modern RDMA NICs [36]. Realizing OPTINIC there-
fore requires only modest deltas: removing features that are
no longer needed, reusing existing abstractions for new pur-
poses, and introducing small software or header-level exten-
sions. We describe how OPTINIC maps onto two representa-
tive platforms—SRNIC and commodity RoCE NICs—while
highlighting where these NICs fall short and how OPTINIC
bridges those gaps.

SRNIC: Removing Reliability, Reusing Metadata and
Timers. SRNIC [57] already contains several building blocks
that OPTINIC relies on—per-packet metadata for direct place-
ment (remote address, offset, sequence ID), and an in-place
DMA pipeline that bypasses reassembly. These features al-
low OPTINIC'’s self-describing delivery semantics to be sup-
ported without structural changes to the datapath. Likewise,
SRNIC’s per-WQE timers, originally intended for retransmis-
sions and RNR backoff, are repurposed to enforce OPTINIC’s
bounded completion model with byte tracking.

However, SRNIC’s original design assumes reliable deliv-
ery. Implementing OPTINIC requires removing the full reli-
ability subsystem—including bitmap tracking, outstanding-
request tables, and loss-recovery state machines—which no
longer serve a purpose and impede tail performance. OP-
TINIC thus simplifies the NIC by eliminating these compo-



nents entirely. The only new NIC-visible field is a 2-byte
stride parameter to support recovery (§3.2), while congestion
control continues to use the existing control queue (CtrlQ)
to surface ECN and pacing signals to software. The result is
a smaller, faster, and more resilient datapath that preserves
compatibility with the RDMA programming model.

RoCE w/ UC: Software Approximation of OPTINIC
on Fixed-Function Hardware. Commodity ConnectX-class
RoCE NICs offer no datapath programmability, and their
UC transport enforces in-order delivery for multi-packet
messages—a semantics incompatible with OPTINIC’s out-
of-order, best-effort model. Realizing OPTINIC therefore
requires a software approximation that works within these
hardware constraints.

The key approximation is forcing every fragment to be a
single-packet WRITE. Each MTU-sized block is issued as an
independent WRITE_WITH_IMM carrying explicit placement
metadata, ensuring that the NIC never triggers its built-in
ordering or reassembly logic. This preserves OPTINIC’s se-
mantics despite UC’s fixed in-order behavior.

Completion and timeout semantics are reimplemented en-
tirely in software, using immediate values to identify frag-
ments and timer queues to enforce deadlines. To prevent cor-
ruption after timeout—something commodity NICs cannot
guard against—we rely on Memory Windows (MWs) with
per-operation rkeys, allowing receivers to revoke write access
mid-collective and block late WRITEs. Congestion control
is likewise implemented in software. Fragment-level feed-
back packets guide pacing decisions in lieu of NIC-managed
rate control [67]; lost fragments yield no feedback, which
integrates cleanly with OPTINIC’s best-effort model.

Although this realization incurs modest CPU overhead, it
preserves all core OPTINIC semantics—independent place-
ment, bounded completion, and explicit pacing—without re-
quiring firmware or driver changes. This makes OPTINIC
immediately deployable on existing RoCE networks while
highlighting the limitations of today’s NICs and the architec-
tural simplifications OPTINIC enables.

4 Implementation

We implement OPTINIC on two platforms: a software pro-
totype running over commodity RoCE NICs to evaluate end-
to-end training and inference, and a hardware prototype on
an FPGA-based SmartNIC to assess area, state overhead, and
transport-level scalability.

RoCE Software Prototype. We implement OPTINIC as a
new transport backend in NVIDIA’s NCCL (v2.23.4-1) via
the Net plugin interface [26], enabling out-of-the-box com-
patibility with DeepSpeed (v0.18.2), PyTorch, and vLLM
(v0.9.1). The integration adds fewer than 500 lines to NCCL,
with the transport logic written in about 8K lines of C++.
All control-plane logic—including completion tracking,
timeout management, and congestion control—is imple-

mented in software. A dedicated timer thread manages dead-
lines, while congestion control uses EQDS [37], with the
sender pacing transmissions based on per-fragment ACKs.
Hadamard transforms for error recovery are implemented
on GPU using an optimized CUDA kernel from HazyRe-
search [24], applied block-wise during encoding/decoding.

FPGA Hardware Prototype. The hardware implementation
of OPTINIC is built on the AMD Alveo U250 FPGA using
Coyote-v2, an open-source ROCEv2-compatible SmartNIC
shell [44]. We synthesize the design in Vivado 2022.1 and
target 10K QPs to match common transport scalability needs.

We evaluate OPTINIC’s hardware resource usage
by removing Coyote’s built-in reliability mechanisms—
retransmission logic, outstanding-request tables, bitmaps, and
reorder buffers—and adding minimal per-WQE state for time-
outs and byte tracking. The transport pipeline reuses Coyote’s
existing support for self-describing placement, and we extend
the packet header by 2 bytes to support stride placement for
recovery.

For comparison, we also synthesize three baselines: (a)
IRN/Falcon, which uses a 1.2 MB reorder buffer and recon-
structed QP state based on prior work. (b) SRNIC, using QP
metadata and extensions as described in the original paper. (c)
UCCL, which requires no hardware changes and runs atop
base RoCE. This setup allows us to directly compare datapath
area, path delay, and QP state across all designs in §5.3.

5 Evaluating OPTINIC

We evaluate OPTINIC to validate our central claim: simplify-
ing RDMA transport for ML workloads improves tail latency,
reduces hardware overhead, and enhances system resilience.
Our evaluation covers three dimensions—Ilatency, efficiency,
and fault tolerance—using both microbenchmarks and end-
to-end distributed workloads on a real-world Cloud cluster
and an FPGA-based prototype.

5.1 Experimental Setup

5.1.1 Test Environments. Our experiments are conducted
on three environments from an academic cloud, CloudLab [1],
and a commercial cloud vendor, Hyperstack [3]. On Cloud-
Lab, we provision an 8-node r7525 [2] cluster, with each
machine featuring dual AMD EPYC 7542 CPUs (64 cores,
2.9GHz), 512 GB DDR4 ECC memory, with an NVIDIA
Tesla V100S GPU (32 GB). Networking is provided by dual-
port Mellanox ConnectX-5 NICs (PCIe Gen4), connected via
a 25 Gbps Ethernet fabric. All nodes run Ubuntu 22.04 and
NCCL v2.23.4-1 with default configurations and OPTINIC
with NCCL on the SmartNICs (§4). To emulate realistic multi-
tenant conditions, we introduce controlled background traf-
fic that reflects RDMA network behavior reported in prior
works [22,35]. On Hyperstack, we provision 4 and 8 node
H100-80G-PCle clusters with each machine featuring 28 CPU
cores, 180 GB DRAM, and an Nvidia H100 GPU with 80 GB
HBM3 memory and PCle Gen5 interconnect.
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Figure 3: End-to-end convergence time-to-accuracy of RoOCE and OPTINIC for different models and cluster environments.

5.1.2 Baselines, Workloads, and Cluster Setup. We eval-
uate three recent open-source LLMs—ILlama-3.2-1B [20],
Phi-1-1B [21], and DeepSeek-R1-Distill-Qwen-1.5B [23]—
chosen to span different architectures and model families.
For training, we fine-tune each model on the ARC-Challenge
dataset [10] using DeepSpeed with ZeRO-3 parallelism, keep-
ing all other training hyperparameters fixed across transports.
For inference, we again use ARC-Challenge prompts and mea-
sure end-to-end generation throughput (tokens/sec), latency
(TTFT), and accuracy using vLLM with all three models
served using Tensor + Pipeline parallelism. For inference,
we also serve the Qwen-3-30B MoE model [64] using Ten-
sor+Expert parallelism to exercise MoE-specific communica-
tion patterns.

Our primary baseline is RoOCEv2 with RC QPs, which en-
forces retransmissions, in-order delivery, and strict comple-
tion semantics at the NIC level—representative of produc-
tion datacenter RDMA deployments. We also benchmark
OPTINIC’s performance against IRN [35], SRNIC [57], Fal-
con [52], UEC [11], and UCCL [67]. Open-source implemen-
tations of these are unavailable or incompatible with cloud
environments and are therefore excluded from end-to-end per-
formance runs.' To assess the resilience of these implementa-
tions at scale, we evaluate their soft-error susceptibility using
the Xilinx SEU Estimator v2023.1 [6]. Following datacenter
deployment guidelines, we model a 15,000-node cluster oper-

I'we attempted to include UCCL [67] in our end-to-end evaluation, but
encountered a bug; the issue has been confirmed by the developers and is
currently being fixed.

ating at a junction temperature of 100 °C [38,47], enabling a
comparative analysis of reliability across all transport designs
under realistic large-scale conditions.

5.2 End-to-End Performance

5.2.1 Distributed Training. Figure 3 reports convergence
trajectories for Llama-3.2-1B, Phi-1-1B, and DeepSeek-R1-
Distill-Qwen-1.5B when fine-tuned on ARC-Challenge with
ZeRO-3 parallelism. Across all three cloud environments and
models, OPTINIC reduces TTA by 1.6x on average relative
to RoCE. Larger configurations benefit more: the 8-node se-
tups yield up to 2x improvement, particularly on Hyperstack
where H100 GPUs shift the bottleneck toward communication.
While CloudLab shows larger raw communication gains, its
V100 GPUs limit end-to-end speedups. These gains arise be-
cause RoCE’s Go-Back-N loss recovery briefly halts progress
for all nodes, even when only a single packet is dropped.
In contrast, OPTINIC continues making forward progress
within each bounded window, avoiding these global pauses.
Final accuracy is unchanged across models, and in some cases
even slightly improves. For example, DeepSeek-R1 achieves
around a 1.2% higher final accuracy with OPTINIC, as the
small, bounded perturbations introduced by random and in-
frequent packet drops act as a mild form of regularization—
similar in spirit to noise injection or dropout—and can occa-
sionally enhance generalization.

5.2.2 Distributed Inference. Figure 4 shows inference
accuracy, throughput (tokens/sec), and latency (TTFT) across
all evaluated models and cloud environments. Interestingly,
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Figure 4: Inference accuracy, throughput, and time-to-first-token (TTFT) across models and cluster environments.

the Qwen-3-30B MoE model also shows a small accuracy
increase with OPTINIC. In MoE inference, small activation-
level perturbations can change which experts are selected,
occasionally producing outputs that score slightly higher. As
vLLM serving is far less communication-intensive than ZeRO-
3 training, the gains of OPTINIC are correspondingly more
moderate but consistently significant. Figure 4a shows that
OPTINIC inference accuracy remains effectively unchanged
across the board (differences < 0.2%) against tail-inducing
reliable RoCE transport across all models and environments.
In Figure 4b, across the non-MoE models, OPTINIC improves
throughput by roughly 28-60% over RoCE. Finally, average
TTFT improves slightly, whereas tail (p99) latency drops
sharply across all models (2-3.5x) as shown in Figure 4c,
consistent with OPTINIC’s tail-optimal design. Notably, the
largest gains in both throughput and TTFT tail appear on the
Hyperstack 8-node configuration, where the stronger H100
GPUs make communication the dominant bottleneck and
OPTINIC’s benefits manifest most prominently.

5.3 Microbenchmarks

5.3.1 OPTINIC is up to 2.5x faster than RoCE across
all collectives and message sizes. Figure 5 compares OP-
TINIC and RoCE across tensor sizes from 20-80 MB for
AllReduce, AllGather, and ReduceScatter collectives. RoCE’s
latency grows steeply with size, reflecting the cumulative cost
of retransmissions and completion dependencies. In contrast,
OPTINIC scales smoothly: latency increases only moder-
ately, remaining mostly linear, and consistently delivering
a 1.6-2.5x speedup over RoCE across the tested sizes and
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collectives. To emulate a hardware deployment of OPTINIC
(HW), we subtract software overheads (segmentation, timers,
pacing) from the RoCE-based prototype, isolating the trans-
port’s performance contribution. Despite omitting retransmis-
sions, observed loss stays under 1% on average for the tensors.
Under a more aggressive timeout for large tensors—accepting
4-5% loss—OPTINIC achieves up to 5x lower latency than
RoCE (not shown), highlighting the performance headroom
unlocked when applications tolerate slightly higher loss.

5.3.2 OPTINIC delivers the fastest collective completion
times across all transports. As shown in Figure 6, OPTINIC
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Table 3: Mean = std runtime of Hadamard across differ-
ent split counts for a 128 MB message.

Time (ms)

achieves the lowest collective communication times across all
three collectives—AlIReduce, AllGather, and ReduceScatter—
delivering both the smallest average Collective Completion
Time (CCT) and the lowest tail latency (p99) among all trans-
ports. In contrast, RoCE, Falcon, and UCCL exhibit similar
mean performance, but their tail latencies remain significantly
higher: Falcon and UCCL match RoCE on average yet their
tail rises to levels comparable to IRN and SRNIC, highlight-
ing persistent head-of-line blocking and retry overheads. IRN
and SRNIC modestly reduce mean CCT but still suffer from
large p99 spikes, particularly for AllReduce, where tail laten-
cies exceed 100—150 ms. By eliminating retransmissions and
reordering entirely, OPTINIC avoids these tail-amplifying
effects and consistently delivers both fast and tightly bounded
completion times.

5.3.3 Hadamard with stride delivers robust, efficient loss
dispersion. Table 3 shows that a Hadamard transform on
raw 128 MB message is the most expensive configuration,
while splitting the tensor into 64 blocks reduces runtime
by 2.5, motivating block-level processing. Figure 7a ex-
amines the resulting resilience tradeoffs: Raw (no coding)
and full-message Hadamard (HD:Msg) behave as expected,
with the latter achieving near-ideal MSE at the highest cost.
Block-wise Hadamard (HD:BIk) is far cheaper but can catas-
trophically amplify error because a lost packet removes all
encoded coefficients for a block, making recovery impossible.
Adding striding (HD:BIk+Str) disperses coefficients across
packets so each loss removes only one position per block, pro-
ducing MSE comparable to full-message Hadamard at much
lower overhead. Figure 7b also shows that resilience improves
with increasing stride: small strides couple many coefficients
per packet and increase MSE, whereas maximal dispersion
yields near—ideal reconstruction across all drop rates. Overall,
OPTINIC’s HD:Blk+Str design matches the robustness of full-
message transforms at a fraction of the computational cost,
making striding essential for resilient block-wise encoding.

5.3.4 OPTINIC achieves order-of-magnitude higher QP
scalability with minimal QP state. OPTINIC delivers the
highest scalability among all evaluated transports, as shown
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Metric | RoCE | IRN | SRNIC | Falcon | UCCL | OPTINIC
NIC State per QP | 407B | 596B | 242B | 350B | 407B 52B
Max. QPs 10K | 8K 20K 12K 10K 80K
Cluster Size 5K | 4K 10K 6K 256 40K

Table 4: Comparison of transport protocols across NIC
state, QP count, and cluster scalability.

Metric | RoOCE | IRN | SRNIC | Falcon | UCCL | OPTINIC
LUT 312.4K | 319.6K | 304.5K | 309.8K | 312.4K 298.4K
LUTRAM | 233K | 242K | 225K | 23.1K | 233K 21.7K
FF 562.1K | 573.1K | 551.5K | 559.2K | 562.1K 543.0K
BRAM 15K | 22K | 09K | 16K | 15K 0.5K
Power (W) 347 359 335 343 34.7 325
MTBF (hrs) | 428 | 309 | 578 | 405 | 4238 | 80.5

Table 5: Comparison of hardware resource utilization and
resilience (MTBF) across RDMA NIC architectures.

in Table 4, by reducing per-QP NIC state to just 52 B—an
order of magnitude smaller than RoCE (407 B), IRN (596 B),
SRNIC (242 B), Falcon (350B), and UCCL (407 B). This
dramatic reduction enables OPTINIC to support up to 80K
active QPs within the same SRAM budget (4 MB) that limits
existing designs to between 8K and 20K QPs. As a result,
OPTINIC scales collective training to 40K nodes, far exceed-
ing the limits of RoCE (5K), IRN (4K), and Falcon (6K), and
doubling SRNIC’s 10K-node scale. UCCL scales even more
poorly, as it opens 256 connections per peer—compared to
the default 2 for all other schemes—which quickly exhausts
NIC resources at large cluster sizes.

5.3.5 OPTINIC delivers maximum hardware resilience
with the smallest NIC footprint. Table 5 shows that OP-
TINIC achieves the smallest hardware footprint and highest
resilience among all evaluated NIC transports. Compared to
RoCE, IRN, SRNIC, Falcon, and UCCL under a 10K-QP con-
figuration synthesized for AMD Alveo U250, OPTINIC re-
duces LUT usage to 298.4K, LUTRAMs to 21.7K, and FFs to
543.0K—representing up to 6.6%, 10.2%, and 5.2% savings,
respectively. Most notably, OPTINIC cuts BRAM consump-
tion to just 0.5K (a 63—73% reduction versus RoCE and IRN)
and lowers power draw to 32.5 W. By eliminating retransmis-
sion, reordering, and per-QP window state, OPTINIC main-
tains only 52 B of per-QP context and thus achieves the high-
est MTBF of 80.5 hours—nearly 2 x better than RoCE and
IRN—demonstrating that simplifying transport-layer hard-
ware simultaneously improves efficiency and robustness.

6 Discussion and Future Work

Deployment on DPUs and SmartNICs. While our RoCE
prototype executes its software control plane on the host CPU,
nothing in OPTINIC’s design requires host participation. The
timeout manager, per-fragment ACK processing, and soft-
ware congestion controller all operate on simple, event-driven
logic that can run unmodified on modern DPUs and Smart-
NICs, which already expose programmable ARM clusters or
P4/XDP execution units. Offloading these components moves



OPTINIC’s control path closer to the NIC datapath, reduc-
ing host overhead and enabling tighter pacing loops without
altering any transport semantics.

Reproducibility and Sources of Nondeterminism. A known
limitation of best-effort transport for distributed training and
inference is reduced reproducibility: transient packet losses
may lead to nondeterministic training (or inference) dynamics
across runs. However, this trade-off is increasingly acceptable
in large-scale LLM workloads, where nondeterminism is al-
ready prevalent due to numerical instabilities, asynchronous
kernel execution, and dynamic parallelism. Even models con-
figured for determinism (e.g., fixed random seeds and zero
sampling) often exhibit nontrivial variance in convergence
accuracy and output behavior [9]. In practice, this means
that strict reproducibility is rarely achieved end-to-end and
system-induced variance is one of many contributing factors.
Nevertheless, OPTINIC can optionally log missing offsets or
byte ranges per step, enabling post hoc debugging or repro-
duction of loss patterns when needed.

Beyond Distributed Training: Broader Applicability. While
our work focuses on distributed training and inference, the
same principles can benefit a broader class of applications
that value timeliness over strict reliability. Latency-critical
and soft real-time systems such as online recommendation
services, interactive analytics, and real-time media stream-
ing (e.g., video conferencing) often tolerate minor data loss
or approximation in exchange for bounded response times.
Applying bounded-loss transport semantics to these domains
opens an exciting direction for rethinking communication not
as a strictly reliable service, but as a controllable dimension in
system design, where performance, efficiency, and accuracy
can be balanced according to application goals. OPTINIC
demonstrates that reliability is not a universal requirement,
but a workload-dependent choice. Relaxing the traditional
transport guarantees can yield tangible benefits in tail latency
and scalability. We believe this opens up a broader space
of domain-specific transport designs that trade reliability for
performance, tuned to the needs of the workloads.

7 Related Work

RDMA Transports and NIC Architecture. IRN [35] removes
PFC by introducing selective-repeat reliability in the NIC,
using bitmap tracking and SACK-based retransmissions to
tolerate loss in RoCE clusters. SRNIC [57] simplifies the NIC
datapath by eliminating WQE caching and shifting retransmis-
sions and reordering to host software, improving QP density
and reducing NIC memory pressure. UCCL [67] continues
this trend by offloading transport control—congestion con-
trol, flow scheduling, and multipath routing—into software,
treating the NIC as a streamlined datapath. Conversely, Fal-
con [52] embraces NIC complexity with fast retransmissions,
delay-based congestion control, and hardware multipath rout-
ing, while UEC [11,25] proposes a clean-slate transport for Al
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workloads with packet spraying and hybrid congestion con-
trol. Despite their differences, these designs preserve strict
reliability semantics and recover every lost packet. In con-
trast, OPTINIC removes packet-level recovery entirely and
introduces bounded-loss completion semantics in software,
yielding a best-effort RDMA transport for ML workloads.

Collective Communication and ML Systems. NCCL [26],
MSCCL [33], and UCC [55] accelerate collective operations
through topology-aware scheduling, fused kernels, and unified
CPU/GPU/DPU interfaces. SHArP [19] performs hierarchical
in-network reductions, while SwitchML [46] and OmniRe-
duce [15] offload aggregation into programmable switches or
network dataplanes. Recent systems such as MSCCL++ [49],
NCCLX [51], and MCCS [62] further improve collective
scheduling and overlap on large GPU clusters. These ap-
proaches optimize or offload collective algorithms but funda-
mentally assume a reliable, in-order transport. OPTINIC dif-
fers by rethinking the transport itself: it provides a best-effort
RDMA system that supports all collective patterns without
specialized switches or full packet reliability.

Lossy Transports and Approximate Communication for ML.
Approximate communication techniques like Top-k sparsi-
fication [53] and quantization methods such as QSGD [4]
and TernGrad [61] reduce gradient traffic with error com-
pensation. THC [31] enables homomorphic aggregation over
quantized updates, while MLT [56] explores bounded-loss
behavior tuned for ML workloads. OptiReduce [59] mitigates
tail effects in AllReduce via time-bounded execution with
adaptive recovery. These approaches focus on software-level
techniques and primarily target AllReduce. In contrast, OP-
TINIC provides hardware-level loss tolerance in the RDMA
datapath, generalizes to all collectives and parallelisms, and
supports both training and inference while saturating modern
100—400,Gbps links.

8 Conclusion

As ML systems scale to thousands of GPUs and flows, the
assumption that transports must guarantee perfect delivery be-
comes increasingly misaligned with workload needs. Beyond
performance, large NIC state and retransmission logic also
reduce resilience and increase fault risk. OPTINIC shows that
correctness in distributed ML does not require full reliability,
but rather timely, bounded progress. By removing retransmis-
sions and in-order delivery, and introducing adaptive, timeout-
driven completion, OPTINIC simplifies the NIC while al-
lowing collectives to proceed without waiting for stragglers.
This design yields 1.8-2.5x faster collectives, 2.7x lower
BRAM usage, and nearly 2x higher fault resilience. These
benefits extend to end-to-end workloads: OPTINIC halves
ZeRO-3 time-to-accuracy, improves inference throughput by
1.6, and reduces tail TTFT by 3.5 x, all without affecting
accuracy. By prioritizing time-bounded progress over strict
reliability, OPTINIC enables a faster, more scalable transport
layer for ML.
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